Structural Studies of Molybdenum Amino-Acid Complexes: the Crystal and Molecular Structures of Hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) Chloride, Hydrogen-di(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) Hexafluorophosphate, Bis- π-cyclopentadienylglycinatomolybdenum(IV) Chloride Monohydrate and Bis- π-cyclopentadienylsarcosinatomolybdenum(IV) Chloride Methanolate

By C.K.Prout, G.B.Allison,* L.T.J.Delbaere \dagger and E. Gore \ddagger
Chemical Crystallography Laboratory, South Parks Road, Oxford OX1 3QS, England

(Received 25 May 1972)

Abstract

The crystal and molecular structures of hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) chloride (orthorhombic, $a=13 \cdot 23, b=15 \cdot 90, c=6 \cdot 26 \AA$, space group $P 2_{1} 2_{1} 2$, linear diffractometer data 1785 reflexions, $R=0.038$), hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) hexafluorophosphate (triclinic, $a=15 \cdot 94, b=7 \cdot 61, c=6 \cdot 19 \AA, \alpha=95 \cdot 6, \beta=101 \cdot 8, \gamma=90 \cdot 1^{\circ}$, space group $P 1$, four-circle diffractometer data 2205 reflexions, $R=0 \cdot 119$), bis- π-cyclopentadienylglycinatomolybdenum(IV) chloride hydrate (monoclinic, $a=13 \cdot 68, b=16 \cdot 65, c=6 \cdot 00 \AA, \gamma=105 \cdot 8^{\circ}$, space group $P 2_{1} / b$, visually estimated photographic data 1819 reflexions, $R=0.109$) and bis- π-cyclopentadienylsarcosinatomolybdenum(IV) chloride methanolate (orthorhombic $a=13 \cdot 43, b=14 \cdot 05, c=7.98 \AA$, space group $P 2_{1} 2_{1} 2_{1}$, linear diffractometer data 1140 reflexions, $R=0.072$) have been determined by three-dimensional X -ray methods. In the bis- π-cyclopentadienylmolybdenum groups the rings are staggered in the sarcosine and cysteine chloride complexes but eclipsed in the glycine and cysteine hexafluorophosphate. The mean length of the normals to the rings from molybdenum is $1.98 \AA$ and the mean angle between them is 133°. The cysteine chelates through nitrogen and sulphur (Mo-N 2.256, Mo-S $2.446 \AA$ in the chloride) and the carboxylate groups are hydrogen bonded to form a typical acid carboxylate dimer ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ $2.46 \AA$). The cysteine has different conformations in the PF_{6}^{-}and Cl^{-}complexes. In the glycine and sarcosine complexes the molybdenum is chelated through oxygen and nitrogen [Mo-N $2 \cdot 24$ (mean), Mo-O $2 \cdot 10 \AA$ (mean)].

Introduction

Molybdenum has been found in a number cf enzyme systems, xanthine oxidase (Bray \& Meriwether, 1966) aldehyde oxidase (Handler \& Rajagoplan, 1964), nitrate reductase (Fewson \& Nicholas, 1961) and nitrogenase (Nicholas, Wilson, Heinen, Palmer \& Beinert, 1962), and e.s.r. studies suggest that the molybdenum atom is bound to cysteine (Bray \& Meriwether, 1966; Handler \& Rajagoplan, 1964; and Huang \& Haight, 1969). These observations have stimulated work on the properties and structure of molybdenum aminoacid complexes. The structures of disodium di- μ-oxobis[oxocysteinatomolybdenum(V)] pentahydrate
(Knox \& Prout, 1969a), bis- μ-oxo-bis-(L-histidinato-oxo-molybdenum(V) trihydrate (Delbaere \& Prout, 1971), di- μ-oxo-bis[oxo-(L-cysteinatoethylester)-mo-
lybdenum(V)] and di- μ-sulphido-bis[oxo-(L-cysteinatomethylester)molybdenum(V)] (Dew \& Kay, 1971) have been reported, but there is little information about the molybdenum amino-acid complexes in other oxidation

[^0]states. The bis- π-cyclopentadienyl compounds of the type $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoX} \mathrm{X}_{2}$ provide an extensive series of compounds for the investigation of the chemistry of molybdenum(IV).

The crystal structures of bis- π-cyclopentadienylmolybdenum dihydride (Gerloch \& Mason, 1965), bis- π cyclopentadienylmolybdenum toluene-3,4-dithiol and bis- π-cyclopentadienyl(2-aminoethanethiolato)molybdenum iodide (Knox \& Prout, 1969a, c), bis- π-cyclopentadienylmolybdenum benzene 1,2-dithiol (Kutoglu \& Kopf, 1970) and $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mu-\mathrm{SBu}^{n}\right)_{2} \mathrm{FeCl}_{2}$ (Cameron \& Prout, 1971) have been reported and show that the presence of the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ Mo group has little effect on the behaviour of the ligand although the ligand X appears to affect the conformation of the (π $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ Mo group.
Now a group of bis- π-cyclopentadienylmolybdenum amino-acid complexes have been prepared and characterized by Gore \& Green (1970), who kindly supplied us with the samples for X-ray work. For optically active amino acids the complexes were prepared from the L -form of the acid. In all the structures six complex
salts, $\mathrm{H}\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}\right]^{+} \mathrm{Cl}_{-}$,
$\mathrm{H}\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}\right]^{+} \mathrm{PF}_{6}^{+}$,
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}_{2} \mathrm{COO}\right]+\mathrm{Cl}^{-} . \mathrm{H}_{2} \mathrm{O}$,
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoHN}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COO}\right]^{+} \mathrm{Cl}^{-}$,
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{COO}\right]+\mathrm{PF}_{6}^{-}$and $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\right.$ (L-proline $\left.)\right]^{+} \mathrm{PF}_{6}^{-}$have been investigated. In this paper we report the structures of the first four of these. The L-leucine and L-proline complexes will be the subject of a later paper. The chloride salts refined easily, but the hexafluorophosphates have all presented unexpected difficulties.

Experimental and crystal data

In parentheses are the abbreviated name of the complex and the initials of the author responsible for the experimental work.
(a) Hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) chloride (cysteine-Cl) (L.T.J.D.) $\mathrm{H}\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}\right]^{+} \mathrm{Cl}^{-}$
$\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Mo}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}, \quad M=726 \cdot 7$, orthorhombic, $a=$ $13 \cdot 23 \pm 0 \cdot 01, \quad b=15 \cdot 90 \pm 0 \cdot 01, \quad c=6 \cdot 26 \pm 0 \cdot 01 \quad \AA, \quad U=$ $1316 \cdot 8 \AA^{3}$, space group $P 2_{1} 2_{1} 2\left(D_{2}^{3}\right.$, No. 18), $D_{m}=1 \cdot 81$ g.cm ${ }^{-3}$ (by flotation), $D_{c}=1 \cdot 83 \mathrm{~g} . \mathrm{cm}^{-3}$ (for $Z=2$), $F(000)=732$, Mo $K \alpha$ radiation $(\lambda=0.7107), \mu=12$ cm^{-1}.

A single crystal $(0.16 \times 0.24 \times 0.64 \mathrm{~mm})$ of the compound with the forms $\{100\}$ and $\{010\}$ was mounted about the c axis. The intensities of 1785 reflexions with $I>3 \sigma$ of the $h k 0-h k 7$ layers were recorded on a Hilger and Watts linear diffractometer by a moving-crystal stationary-counter method with Mo $K \alpha$ radiation and balanced filters. The total scan range was 2.5° with the peak scan twice each background scan. The Lorentz and polarization factors were applied but no absorption corrections were made.

The locations of the molybdenum and sulphur atoms and the chloride ion were determined from Patterson syntheses. The molybdenum and sulphur atoms were in the fourfold general positions whereas the chloride ions were in the twofold special positions $(0,0, z)$ and $\left(\frac{1}{2}, \frac{1}{2}, \bar{z}\right)$ situated on diad axes. The positions of the carbon atoms were then determined by successive difference syntheses. The trial structure suggested a hydrogen bonded

$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}_{2} \mathrm{H}^{+}\right.$

cation with a crystallographic diad axis. Three cycles of full-matrix least-squares refinement of the scale factor, positional parameters and isotropic temperature factors led to a residual R of $0.072\left(R=\| F_{o}\left|-\left|F_{c}\right|\right| \mid\right.$ $\left.\left|F_{o}\right|\right)$. Three further cycles of least-squares refinement with anisotropic temperature factors reduced R to $0 \cdot 042$. Two matrix blocks, one for the refinement of the scale factor and anisotropic temperature factors and the other for the positional parameters were used. A difference synthesis gave the positions of all the hydrogen atoms except the one in the hydrogen bond between the carboxyl groups of the dimer. With these
hydrogen atoms included in the structure factor calculation, the refinement of the parameters of all the nonhydrogen atoms lowered the residual R to 0.038 . Each hydrogen atom was assigned the isotropic temperature factor obtained, after the isotropic temperature refinement, for the atom to which the hydrogen was bonded. The weighting scheme used was:

$$
w=\left\{1+\left[\left(F_{o}-26 \cdot 8\right) / 14 \cdot 6\right]^{2}\right\}^{-1} .
$$

Convergence was achieved in the final cycle of refinement with the largest parameter shift $0 \cdot 3$ of its estimated standard deviation.
(b) Hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) hexafluorophosphate (cysteine- PF_{6}) $\mathrm{H}\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}_{2}^{+} \mathrm{PF}_{6}^{-}\right.$(G.B.A.) $\mathrm{C}_{20} \mathrm{H}_{3} \mathrm{Mo}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{PF}_{6}, \quad M=836$, triclinic, $a=15.94 \pm$ $0.01, b=7.61 \pm 0.01, c=6 \cdot 19 \pm 0.01 \AA ; \alpha=95.6 \pm 0.1$, $\beta=101 \cdot 8 \pm 0 \cdot 1, \quad \gamma=90 \cdot 1 \pm 0 \cdot 1^{0}, D_{m}=1 \cdot 90 \mathrm{~g} . \mathrm{cm}^{-3}$ (by flotation), for $Z=1, D_{c}=1.87 \mathrm{~g} . \mathrm{cm}^{-3}$, Mo $K x$ radiation, $\mu=12.5 \mathrm{~cm}^{-1}$, piezoelectric; space group $P 1$ (C_{1}, No. 1).
The intensities of 2205 independent reflexions with $I>3 \sigma$ were obtained with a Hilger and Watts fourcircle diffractometer from a crystal $0.2 \times 0.4 \times 1.0 \mathrm{~mm}$. using an $\omega-2 \theta$ scan. The intensities of the reflexions, which all came from the same hemispherical shell $\left(h_{\text {max }}-\bar{h}_{\text {max }}, k_{\text {max }}-\bar{k}_{\text {max }}, 0-I_{\text {max }}\right.$), were corrected for Lorentz and polarization effects, but not for absorption or extinction.
The crystals, prepared from optically resolved L-cysteine, were piezoelectric. Therefore, they had to be non-centrosymmetric. However, the Patterson function was consistent with a pair of molybdenum atoms and a PF_{6}^{-}ion at inversion centres in $P \overline{1}$. Subsequent F_{o} and difference syntheses indicated locations for the π-cyclopentadienyl groups and the nitrogen and sulphur atoms in $P \overline{1}$ with the apparent inversion centres still present, but after these atoms were included in the structure factor calculation the difference synthesis in $P \overline{\mathrm{I}}$ showed two sets of peaks for the carboxyl and α carbon atoms.
A model for a hydrogen bonded dimeric cation essentially similar to that in Fig. 2 was set up with L-cysteine ligands. All atoms in the asymmetric unit had equivalent atoms related by inversion except $O(1), O(2)$, $\mathrm{C}(2)$ and $\mathrm{C}(3)$ of one half of the dimer and $\mathrm{O}(3), \mathrm{O}(4)$, $C(4)$ and $C(5)$ of the other half of the dimer. A system of this type on least-squares refinement gives an illconditioned normal matrix (Rae \& Maslen, 1963), for which conditions of singularity are inherent on inversion, and the consequent parameter shifts may be wildly inaccurate. To try to preserve a chemically reasonable system, bond lengths were constrained by Waser's (1963) method as implemented by Ford (1970) and Rollett (1970) in those parts of the asymmetric unit related by the pseudo-inversion centre. Anisotropic temperature factors were given to all atoms except those of the cyclopentadienyl groups. The refinement
was only partially successful and converged at $R=$ 11.9%. The weighting scheme used was: $w=20 / F_{o}$ if $F_{o}>20$, otherwise $w=1$.
(c) Bis- π-cyclopentadienylglycinatomolybdenum(IV) chloride monohydrate (glycine-Cl)
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}_{2} \mathrm{COO}\right]^{+} \mathrm{Cl}^{-} . \mathrm{H}_{2} \mathrm{O}$ (E.S.G.) $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{MoNO}_{3} \mathrm{Cl}, M=353 \cdot 7$, monoclinic; $a=13 \cdot 68 \pm$ $0.02, b=16.65 \pm 0.02, c=6.00 \pm 0.02 \AA, \gamma=105 \cdot 8 \pm 0 \cdot \overline{2}$, space group $P 2_{1} / b\left(C_{2 h}^{5}\right.$, No. 14) $D_{m}=1.81 \mathrm{~g} . \mathrm{cm}^{-3}$. (by flotation), $D_{c}=1.79 \mathrm{~g} . \mathrm{cm}^{-3}$ (for $Z=4$), $F(000)=712$. Ni-filtered $\mathrm{Cu} K \alpha$ radiation $\left(\lambda=1.5418 \AA\right.$), $\mu=10 \mathrm{~cm}^{-1}$.

Equi-inclination Weissenberg photographs of the $h k 0$ to $h k 5$ layers of a single crystal of
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH} \mathrm{CH}_{2} \mathrm{COO}\right] \mathrm{Cl} . \mathrm{H}^{2} \mathrm{O}$ rotating about the c axis were recorded by the multiple film technique. The unit-cell dimensions were obtained from calibrated zero-layer Weissenberg and precession photographs.

The position of the molybdenum atom was determined from a Patterson synthesis and those of the remaining non-hydrogen atoms in the structure from successive difference syntheses. The trial structure was refined by the full-matrix least-squares method. Isotropic temperature factors were initially assigned to all the non-hydrogen atoms but in the last stages of refinement the molybdenum atom and chloride ion were assigned anısotropic temperature parameters. The weighting scheme used was:
$w=\left[1-\left(\left|F_{o}\right|-7 / 16\right)^{2}\right]^{-1}$. The final residual R is 0.106 for the 1819 observed reflexions.
(d) Bis- π-cyclopentadienylsarcosinatomolybdenum(IV) chloride methanolate (sarcosine- Cl)
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COO}\right]^{+} \mathrm{Cl}^{-} . \mathrm{CH}_{3} \mathrm{OH}$
(L.T.J.D.) $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClMoNO}_{3}, \quad M=381 \cdot 7$, orthorhombic, $a=13.43 \pm 0.01, b=14.05 \pm 0.01, c=7.98 \pm 0.01 \AA$,
$U=1505 \AA^{3}$, space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right.$, No. 19), $D_{m}=$ $1.67 \mathrm{g.cm}{ }^{-3}$ (by flotation), $D_{c}=1.68 \mathrm{~g} . \mathrm{cm}^{-3}$ (for $Z=$ 4), $\mu=10 \mathrm{~cm}^{-1}, F(000)=776$ Mo $K \alpha$ radiation $(\lambda=$ 0.7107), balanced filters.

A single crystal $(0.25 \times 0.15 \times 0.75 \mathrm{~mm})$ of the compound, a rhombic prism of the form $\{110\}$, was mounted about the c axis. The intensities of 1140 independent reflexions with $I>4 \sigma$ of layers $h k 0$ to $h k 8$ were recorded with a Hilger and Watts linear diffractometer by a moving-crystal stationary-counter method. The Lorentz and polarization corrections were applied but not absorption or extinction corrections.

The location of the molybdenum atom was determined from a Patterson synthesis. Then the positions of the chloride ion, the light atoms of the cation and the solvent molecule, the presence of which was deduced from the unit-cell parameters, and the density were determined from successive $F_{\text {obs }}$ and difference syntheses. The trial structure was refined by the leastsquares method with three matrix blocks: one for the scale factor and $U_{i i}$ anisotropic temperature parameters, the second for the $U_{i j}$ temperature parameters, and the third for the space parameters. The weighting scheme was: $w=\left\{1+\left[\left(\left|F_{o}\right|-21\right) / 21\right]^{2}\right\}^{-1}$. The refinement converged at $R=0.072$.

Calculations

All calculations were carried out on the Oxford University KDF9 computer with Rollett and Hodder's (unpublished) NOVTAPE system, Rollett and Ford's (unpublished) Algol system and ancillary programs made available by various members of our group.

In all calculations, the atomic scattering factors from International Tables for X-ray Crystallography (1962)

Table 1. Hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) chloride, fractional atomic coordinates and temperature factors
Estimated standard deviations are given in parentheses. Coordinates are $\times 10^{4}$, thermal parameters $\times 10^{3}$. Here and in subsequent tables the anisotropic temperature factor T is given by:

$$
T=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} / 2 c^{* 2}+2 U_{23} k l b^{*} c^{*}+2 U_{13} h l a^{*} c^{*}+2 U_{12} h k a^{*} b^{*}\right) \times 10^{-3}\right]
$$

	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
Mo	1252 (0)	2243 (0)	2049 (1)	$11 \cdot 6$ (2)	15.7 (2)	$23 \cdot 6$ (2)	-0.6 (4)	-2.6 (4)	$2 \cdot 4$ (4)
Cl	0 (-)	0 (-)	5987 (5)	48 (2)	34 (1)	39 (2)	0 (-)	0 (-)	-48 (3)
S	2307 (1)	1545 (1)	-626 (3)	$20 \cdot 6$ (8)	$35 \cdot 3$ (9)	$26 \cdot 1$ (9)	1 (1)	9 (1)	10 (1)
$\mathrm{O}(1)$	3848 (4)	1021 (4)	4339 (11)	26 (3)	46 (3)	56 (4)	-37(5)	-30 (6)	20 (5)
$\mathrm{O}(2)$	4073 (4)	-28 (4)	2070 (12)	23 (2)	39 (3)	51 (3)	-23 (7)	-7 (5)	27 (4)
N	1806 (4)	1088 (3)	3785 (11)	17 (3)	15 (3)	31 (3)	4 (4)	4 (4)	5 (4)
C(1)	3534 (5)	507 (4)	3112 (14)	21 (3)	25 (3)	36 (4)	6 (6)	-7 (5)	4 (4)
C(2)	2391 (5)	430 (4)	2625 (11)	16 (3)	15 (3)	35 (4)	2 (4)	-7 (4)	6 (4)
C(3)	2172 (5)	467 (5)	288 (12)	25 (3)	30 (4)	29 (4)	-20 (5)	-12(5)	19 (5)
C(11)	-70 (7)	2578 (6)	-209 (17)	29 (4)	44 (5)	51 (5)	21 (7)	-41 (7)	2 (6)
C(12)	57 (6)	1707 (6)	-487 (16)	18 (3)	51 (5)	49 (5)	-43 (8)	-18(7)	14 (6)
C(13)	-106 (6)	1327 (5)	1518 (18)	21 (3)	34 (4)	71 (7)	1 (8)	-20 (7)	-12(6)
C(14)	-365 (5)	1943 (7)	3009 (21)	10 (3)	65 (5)	61 (6)	8 (10)	9 (7)	-9 (6)
C(15)	-365 (5)	2716 (6)	1946 (16)	22 (3)	46 (4)	46 (5)	-33 (9)	-24 (6)	36 (6)
C(21)	1538 (6)	3703 (4)	2004 (18)	41 (4)	17 (3)	55 (5)	7 (7)	-24 (8)	-17(5)
C(22)	1283 (7)	3478 (5)	4125 (15)	41 (4)	25 (4)	54 (5)	-37 (6)	8 (9)	2 (8)
C(23)	2005 (5)	2921 (5)	4912 (16)	62 (6)	21 (4)	41 (5)	-9 (6)	-24 (8)	-8 (6)
C(24)	2721 (5)	2781 (5)	3209 (16)	21 (3)	32 (4)	63 (6)	-17(9)	-30(6)	-16(6)
C(25)	2429 (6)	3292 (5)	1511 (16)	37 (4)	28 (4)	52 (6)	3 (6)	15 (7)	-32 (6)

Table 1 (cont.)
All hydrogen parameters are given $\times 10^{3}$.

	x / a	y / b	z / c	$U_{\text {iso }}$
$\mathrm{H}(1)$	211	125	480	22
$\mathrm{H}(2)$	126	80	448	22
$\mathrm{H}(3)$	219	-5	308	22
$\mathrm{H}(4)$	160	16	-16	25
$\mathrm{H}(5)$	258	19	-92	25
$\mathrm{H}(6)$	17	308	-72	38
$\mathrm{H}(7)$	13	147	-212	31
$\mathrm{H}(8)$	8	69	212	37
$\mathrm{H}(9)$	-66	188	440	43
$\mathrm{H}(10)$	-60	323	220	35
$\mathrm{H}(11)$	200	272	640	42
$\mathrm{H}(12)$	85	383	460	39
$\mathrm{H}(13)$	119	405	80	37
$\mathrm{H}(14)$	266	344	0	37
$\mathrm{H}(15)$	336	231	348	37

for neutral atoms, corrected for the real part of the the dispersion, were used.

Results

For each complex, copies of the observed structure amplitudes and structure factors calculated from the

Fig. 2. Hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) hexafluorophosphate: the crystal structure seen in projection down \mathbf{c}.

Fig. 1. Hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) chloride: the crystal structure seen in projection down \mathbf{c}.

Table 2. Hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) hexafluorophosphate, fractional atomic coordinates and temperature factors

All parameters are $\times 10^{3}$. Standard deviations are in parentheses.

	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{13}$	$2 U_{12}$
$\mathrm{P}(1)$	7 (1)	-12 (2)	-2 (2)	50 (4)	48 (4)	29 (3)	-18(5)	17 (5)	-53(6)
F(1)	22 (3)	182 (5)	-2 (5)	162 (32)	89 (25)	63 (21)	5 (39)	64 (42)	-56 (46)
F (2)	-14 (2)	-222 (3)	19 (5)	100 (18)	23 (10)	73 (19)	-18 (22)	29 (28)	-70 (22)
F (3)	113 (3)	-38(8)	84 (6)	81 (26)	194 (49)	47 (21)	20 (50)	-34 (36)	-55 (59)
$F(4)$	-86 (2)	-23 (4)	-67 (5)	47 (14)	103 (20)	79 (20)	-22 (31)	68 (28)	-62 (28)
F(5)	7 (2)	17 (4)	269 (4)	104 (21)	89 (20)	34 (12)	-34 (25)	79 (26)	-65 (33)
$F(6)$	23 (2)	-66 (4)	-234 (4)	84 (18)	93 (22)	35 (13)	-16 (29)	3 (25)	-73 (34)
Mo(1)	$770 \cdot 5$ (-)	552.4 (-)	$333 \cdot 6$ (-)	23 (1)	51 (2)	18 (1)	2 (3)	4 (2)	-60 (3)
Mo(2)	$252 \cdot 5$ (2)	-589.3 (3)	$678 \cdot 8$ (4)	57 (2)	5 (1)	18 (1)	13 (2)	-7(2)	-18 (2)
S(1)	315 (1)	-391 (1)	1016 (1)	36 (5)	70 (6)	13 (4)	-4 (8)	20 (7)	-81 (9)
S(2)	703 (1)	376 (1)	$-10 \cdot 6(2)$	96 (8)	26 (4)	16 (4)	8 (7)	-20 (9)	-41 (9)
O(1)	461 (2)	203 (6)	318 (6)	33 (15)	161 (37)	87 (24)	123 (50)	13 (30)	-9 (35)
$\mathrm{O}(2)$	588 (2)	114 (3)	520 (4)	75 (17)	54 (14)	38 (12)	13 (20)	26 (23)	-71 (25)
C(1)	632 (3)	233 (7)	107 (5)	143 (39)	138 (39)	7 (14)	-57 (37)	33 (38)	-296 (72)
C(2)	596 (3)	319 (6)	261 (5)	80 (26)	106 (31)	18 (16)	-31(37)	18 (33)	- 182 (50)
C(3)	544 (2)	201 (4)	361 (4)	27 (16)	30 (16)	19 (13)	-3 (22)	10 (23)	-29 (26)
N(1)	668 (2)	427 (3)	440 (4)	64 (16)	9 (10)	14 (12)	-10 (18)	-48(21)	-5 (20)
$\mathrm{O}(3)$	505 (2)	-82 (4)	699 (5)	68 (18)	99 (22)	63 (17)	-25 (30)	85 (29)	-125 (33)
$\mathrm{O}(4)$	527 (2)	-360 (4)	555 (5)	44 (15)	77 (20)	82 (21)	-32 (33)	35 (27)	-63 (28)
$\mathrm{N}(2)$	371 (1)	-472 (4)	579 (4)	4 (9)	57 (16)	37 (15)	-37 (24)	32 (17)	-46 (18)
C(4)	486 (2)	-247 (4)	621 (6)	61 (30)	50 (23)	34 (18)	12 (34)	6 (39)	- 59 (44)
C(5)	405 (3)	-310 (7)	698 (5)	76 (28)	117 (34)	11 (14)	-35 (37)	39 (34)	-51 (53)
C(6)	411 (3)	-298(7)	960 (5)	87 (30)	117 (39)	11 (15)	8 (38)	18 (33)	-29 (52)

Table 2 (cont.)

	x / a	y / b	z / c	$U_{\text {iso }}$
	$761(2)$	$785(5)$	$117(5)$	$43(7)$
$\mathrm{C}(11)$	$812(2)$	$844(4)$	$323(5)$	$35(6)$
$\mathrm{C}(12)$	$768(3)$	$846(7)$	$486(5)$	$75(12)$
$\mathrm{C}(13)$	$681(2)$	$804(7)$	$383(7)$	$76(11)$
$\mathrm{C}(14)$	$680(2)$	$749(5)$	$161(6)$	$59(9)$
$\mathrm{C}(15)$				
$\mathrm{C}(21)$	$166(2)$	$-527(4)$	$366(5)$	$46(8)$
$\mathrm{C}(22)$	$188(2)$	$-363(4)$	$470(5)$	$41(8)$
$\mathrm{C}(23)$	$113(2)$	$-608(4)$	$496(5)$	$42(7)$
$\mathrm{C}(24)$	$160(3)$	$-339(4)$	$669(6)$	$50(10)$
$\mathrm{C}(25)$	$121(3)$	$-504(5)$	$694(6)$	$60(11)$
$\mathrm{C}(31)$	$307(2)$	$-851(4)$	$557(4)$	$30(6)$
$\mathrm{C}(32)$	$224(2)$	$-886(4)$	$584(5)$	$43(7)$
$\mathrm{C}(33)$	$359(2)$	$-802(5)$	$760(5)$	$46(7)$
$\mathrm{C}(34)$	$226(2)$	$-854(5)$	$813(5)$	$47(8)$
$\mathrm{C}(35)$	$308(2)$	$-794(5)$	$924(5)$	$52(9)$
$\mathrm{C}(41)$	$903(3)$	$428(5)$	$293(6)$	$54(9)$
$\mathrm{C}(42)$	$850(3)$	$302(5)$	$355(7)$	$61(11)$
$\mathrm{C}(43)$	$912(4)$	$569(5)$	$463(7)$	$81(14)$
$\mathrm{C}(44)$	$842(4)$	$346(7)$	$570(8)$	$95(19)$
$\mathrm{C}(45)$	$880(3)$	$510(6)$	$640(6)$	$74(12)$

final atomic parameters (Tables 1 to 4) have been deposited at the National Lending Library, England.*

[^1]Projections of the crystal structures are shown in Figs. 1 to 4 . The bonded distances and interbond angles, certain dihedral angles and equations of important molecular planes are given in Tables 5 to 10 and Figs. 5 to 8 .

Table 3. Bis- π-cyclopentadienylglycinatomolybdenum(IV) chloride monohydrate, fractional atomic coordinates and temperature factors

Estimated standard deviations in parentheses. All values $\times 10^{3}$.

Table 4. Bis- π-cyclopentadienylsarcosinatomolybdenum(IV) chloride methanolate, fractional atomic coordinates and temperature factors
Estimated standard deviations in parentheses.

	x / a	y / b	z/c	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
Mo	0.2855 (1)	0.2933 (1)	0.2186 (2)	0.0366 (7)	0.0226 (6)	0.0286 (7)	0.000 (1)	-0.003 (1)	$-0.007(1)$
Cl	$0 \cdot 1549$ (4)	0.0583 (3)	0.7748 (10)	0.057 (3)	0.042 (2)	0.064 (4)	-0.007 (6)	0.003 (6)	0.025 (4)
$\mathrm{O}(1)$	0.2531 (10)	$0 \cdot 4358$ (9)	$0 \cdot 1586$ (19)	0.056 (7)	0.035 (6)	0.039 (8)	0.00 (1)	-0.06 (1)	-0.01 (1)
$\mathrm{O}(2)$	$0 \cdot 2890$ (12)	$0 \cdot 5895$ (8)	$0 \cdot 1855$ (20)	0.077 (9)	0.021 (5)	0.068 (11)	0.02 (1)	-0.04 (2)	0.01 (1)
N	$0 \cdot 355$ (1)	$0 \cdot 383$ (1)	$0 \cdot 418$ (2)	0.039 (8)	0.029 (7)	0.041 (11)	-0.01 (1)	0.00 (1)	-0.01 (1)
C(1)	0.301 (1)	$0 \cdot 508$ (1)	$0 \cdot 236$ (3)	0.040 (9)	0.036 (8)	0.051 (13)	0.02 (2)	0.01 (2)	0.03 (1)
C(2)	0.377 (1)	$0 \cdot 480$ (1)	0.361 (3)	0.039 (9)	0.037 (9)	0.029 (10)	0.00 (2)	0.03 (2)	-0.02 (2)
C(3)	0.438 (2)	0.344 (1)	0.523 (3)	0.053 (12)	0.041 (11)	$0 \cdot 060$ (12)	0.02 (2)	-0.04 (2)	0.00 (2)
C(11)	0.154 (2)	$0 \cdot 187$ (1)	$0 \cdot 195$ (3)	0.069 (13)	0.050 (11)	0.025 (12)	-0.02 (2)	0.03 (2)	-0.02 (2)
C(12)	0.118 (1)	$0 \cdot 278$ (2)	0.208 (3)	0.051 (10)	0.075 (13)	0.048 (13)	-0.01 (3)	0.02 (2)	-0.09 (2)
C(13)	0.144 (1)	$0 \cdot 309$ (1)	0.369 (3)	0.037 (9)	0.051 (11)	0.038 (12)	-0.01 (2)	0.03 (2)	-0.03 (2)
C(14)	0.195 (1)	0.235 (1)	0.448 (3)	0.046 (11)	0.035 (9)	0.045 (13)	-0.01 (1)	0.01 (2)	-0.03 (1)
C(15)	$0 \cdot 202$ (2)	$0 \cdot 158$ (1)	0.335 (3)	0.060 (12)	0.043 (9)	0.045 (12)	0.05 (1)	-0.01 (2)	-0.05 (2)
C(21)	0.325 (2)	0.245 (2)	-0.046 (3)	0.050 (12)	0.087 (15)	0.047 (15)	-0.04 (2)	0.01 (2)	-0.02 (2)
C(22)	$0 \cdot 390$ (2)	$0 \cdot 320$ (1)	-0.010 (3)	0.064 (13)	0.030 (9)	0.052 (14)	-0.01 (2)	0.05 (2)	0.01 (2)
C(23)	0.448 (2)	0.295 (2)	$0 \cdot 128$ (4)	0.051 (11)	0.048 (10)	0.084 (18)	-0.05 (3)	0.04 (2)	-0.04 (2)
C(24)	0.427 (1)	0.201 (2)	$0 \cdot 186$ (3)	0.048 (9)	0.051 (10)	0.069 (16)	0.03 (2)	0.04 (2)	0.03 (2)
C(25)	0.351 (2)	$0 \cdot 170$ (2)	0.066 (3)	0.085 (15)	0.041 (10)	$0 \cdot 044$ (15)	0.01 (2)	0.05 (2)	0.03 (2)
$\mathrm{O}(3)$	0.476 (2)	0.029 (2)	0.547 (5)	0.093 (15)	0.144 (19)	0.184 (34)	-0.11 (4)	0.03 (4)	-0.09 (3)
C(4)	0.417 (2)	$0 \cdot 062$ (2)	$0 \cdot 653$ (6)	0.094 (19)	$0 \cdot 050$ (14)	$0 \cdot 154$ (31)	-0.05 (4)	$0 \cdot 11$ (4)	-0.01 (3)

Table 5. Hydrogen di(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum (IV) chloride, interatomic distances and angles
Estimated standard deviations in parentheses.
(a) Bond lengths and interbond angles

Mo-S	2.446 (2) \AA	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15)$	107.6 (9) ${ }^{\circ}$
Mo- -N	$2 \cdot 256$ (7)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$107 \cdot 1$ (9)
Mo-C(11)	2.311 (11)	C(12)-C(13)-C(14)	109.4 (10)
Mo-C(12)	2.396 (10)	C(13)-C(14)-C(15)	$107 \cdot 4$ (11)
Mo--C(13)	$2 \cdot 337$ (11)	$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(14)$	108.4 (9)
Mo-C(14)	2.273 (13)		
Mo-C(15)	$2 \cdot 268$ (10)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.42 (2) \AA
Mo-C(21)	2.353 (11)	C(21)-C(25)	$1 \cdot 38$ (2)
$\mathrm{Mo}-\mathrm{C}(22)$	$2 \cdot 355$ (10)	C(22)-C(23)	$1 \cdot 39$ (1)
Mo--C(23)	$2 \cdot 317$ (10)	C(23)-C(24)	$1 \cdot 44$ (1)
Mo-C(24)	$2 \cdot 244$ (8)	$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 39$ (1)
Mo-C(25)	$2 \cdot 307$ (10)		
		$\mathrm{C}(21)-\mathrm{H}(13)$	$1.0 \AA$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 41$ (2)	$\mathrm{C}(22)-\mathrm{H}(12)$	$0 \cdot 9$
$\mathrm{C}(11)-\mathrm{C}(15)$	1.42 (1)	$\mathrm{C}(23)-\mathrm{H}(11)$	1.0
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 41$ (2)	$\mathrm{C}(24)-\mathrm{H}(15)$	$1 \cdot 1$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 40$ (2)	$\mathrm{C}(25)-\mathrm{H}(14)$	1.0
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 40$ (2)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(25)$	$107 \cdot 0(9)^{\circ}$
		$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$109 \cdot 2$ (9)
$\mathrm{C}(11)-\mathrm{H}(6)$	$0 \cdot 9$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	106.7 (8)
$\mathrm{C}(12)-\mathrm{H}(7)$	$1 \cdot 1$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$107 \cdot 0$ (8)
$\mathrm{C}(13)-\mathrm{H}(8)$	$1 \cdot 1$	$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{C}(24)$	$110 \cdot 0$ (9)
$\mathrm{C}(14)-\mathrm{H}(9)$	1.0		
$\mathrm{C}(15)-\mathrm{H}(10)$	$0 \cdot 9$		
Cysteine ligand			
$\mathrm{S}-\mathrm{C}(3)$	1.816 (8) \AA	S—_-Mo-_N	77.0 (2) ${ }^{\circ}$
$\mathrm{C}(2)-\mathrm{C}(3)$	1.49 (1)	$\mathrm{Mo}-\mathrm{N}-\mathrm{C}(2)$	$120 \cdot 4$ (5)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 55$ (1)	Mo--S_-C(3)	99.0 (4)
$\mathrm{C}(2)-\mathrm{N}$	$1 \cdot 49$ (1)	S--C(3)-C(2)	$109 \cdot 1$ (5)
$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 20$ (1)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.3 (6)
$\mathrm{C}(1)-\mathrm{O}(2)$	$1 \cdot 29$ (1)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}$	110.4 (6)
$\mathrm{O}(2) \cdots \mathrm{S}$	3.816 (8)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	$110 \cdot 8$ (6)
$\mathrm{O}(2) \cdots \mathrm{N}$	$3 \cdot 65$ (1)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	121.4 (8)
N \cdots. ${ }^{\text {S }}$	2.932 (7)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(2)$	112.9 (7)
$\mathrm{C}(2)-\mathrm{H}(3)$	0.9	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$125 \cdot 8$ (9)
$\mathrm{C}(3) \quad \mathrm{H}(4)$	$0 \cdot 9$		
$\mathrm{C}(3)-\mathrm{H}(5)$	1.0		
$\mathrm{N}-\mathrm{H}(1)$	0.8		
$\mathrm{N}-\mathrm{-H}(2)$	1.0		

(b) Hydrogen bonds and close contacts

$\mathrm{O}(2) \cdots \mathrm{O}\left(2^{1}\right)$	$2.455 \AA$	$\mathrm{N} \cdot \cdots \cdots \cdot \mathrm{O}(1)$	2.73 £
$\mathrm{C}(1)-\mathrm{O}(2) \cdots \mathrm{O}\left(2^{\text {i }}\right.$	122.0°	$\mathrm{H}(1) \cdots \mathrm{O}(1)$	2.35
$\mathrm{C}(24) \cdots \mathrm{O}(1)$	$3.25 \AA$	$\mathrm{N}-\ldots \mathrm{H}(1) \cdots \mathrm{O}(1)$	110°
$\mathrm{H}(15) \cdots \mathrm{O}(1)$	$2 \cdot 22$	$\mathrm{H}(1)--\mathrm{N} \cdot \cdots \cdot \mathrm{O}(1)$	54
$\mathrm{C}(24) \cdots-\mathrm{H}(15) \cdots \mathrm{O}(1)$	149°		
$\mathrm{H}(15) \ldots \mathrm{C}(24) \cdots \mathrm{O}(1)$	20	S $\cdots \cdots \cdot \mathrm{C}(12)$	2.99 A
		S $\cdots \cdots \cdot \mathrm{C}(25)$	3.09
$\mathrm{N} \cdot \cdots \cdot \mathrm{Cl}^{-}$	$3 \cdot 23 \AA$	$\mathrm{N} \cdot \cdots \cdot \mathrm{C}(13)$	$2 \cdot 93$
$\mathrm{H}(2) \cdots{ }^{-} \mathrm{Cl}^{-}$	$2 \cdot 30$	$\mathrm{N} \cdot \cdots \cdot \mathrm{C}(24)$	$2 \cdot 97$
$\mathrm{N}-\ldots-\mathrm{H}(2) \cdots \mathrm{Cl}^{-}$	115°	$\mathrm{N} \cdot \cdots \cdot \mathrm{C}(23)$	$3 \cdot 01$
$\mathrm{H}(2)-\mathrm{N} \cdots \cdots \mathrm{Cl}^{-}$	4	$\mathrm{C}(15) \cdots \mathrm{C}(21)$	$2 \cdot 97$
		$\mathrm{C}(11) \cdots \mathrm{C}(21)$	$3 \cdot 11$
$\mathrm{N} \cdot \cdots \cdot{ }^{\text {S }}$	3.63 §	$\mathrm{C}(15) \cdots \mathrm{C}(22)$	$2 \cdot 84$
$\mathrm{H}(1) \cdots{ }^{\text {i }}$	2.91	$\mathrm{H}(6) \cdots \cdot \mathrm{H}(13)$	2.26
N	152°	$\mathrm{H}(10) \cdots \mathrm{H}(12)$	$2 \cdot 61$
$\mathrm{H}(1)-\mathrm{N} \cdot \cdots \cdot{ }^{\text {ii }}$	22		
$\mathrm{C}(2)-\mathrm{N} \cdot \cdots \cdot{ }^{\text {ii }}$	121		
Mo-- $\mathrm{N} \cdot \cdots \cdot \cdot{ }^{\text {Sii }}$	111		

${ }^{\text {i }}$ Atom in Table 1 transformed by $(1-x,-y, z)$.
ii Atom in Table 1 transformed by ($x, y, 1+z$).

Discussion

In the crystals of the cysteine complexes there are isolated anions and complex cations. In these cations the cysteine ligands chelate the bis- π-cyclopentadienylmolybdenum moieties through nitrogen and sulphur and they also form hydrogen bonds through the carboxylate oxygen atoms to give dimeric species typical of hydrogen carboxylates. In the crystals of the glycine and sarcosine complexes, the amino-acid ligands chelate the bis- π-cyclopentadienylmolybdenum groups through nitrogen and oxygen to give complex cations that are linked by hydrogen bonding to the anions and solvent of crystallization.

(i) The $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ Mo groups

In the crystals of the four complexes, there are five crystallographically independent bis- π-cyclopentadie-

Fig. 3. Bis- π-cyclopentadienylglycinatomolybdenum(IV) chloride monohydrate: the crystal structure seen in projection down c .
nylmolybdenum groups (two in cysteine- PF_{6}). These groups are shown, projected onto the plane of the $\operatorname{Mo} X_{2}(X=\mathrm{O}, \mathrm{N}$ or S) group, in Fig $5(a-e)$. The π-cyclopentadienyl groups are planar within experimental error (Table 10) and the dimensions are essentially the same as those reported elsewhere by the Oxford group (Knox \& Prout, 1969a, b); Cameron \& Prout, 1972a, b) but differ from those found in the hydride $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$ by Gerloch \& Mason (1965). In all cases the molybdenum atom was situated almost directly over the centroid of the π-cyclopentadienyl ring ring and the perpendicular distance from the molybdenum atom to the ring was found to be in the range $1.92-2 \cdot 00 \AA$ (Table 9). In contrast, the distance is 1.89 \AA in the hydride. The point symmetry of the molybdenum atom approximates to $C_{2 v}$ with the plane of the ring normals approximately perpendicular to the MoX_{2} (Table 9). The exact value of the angle appears to depend on the crystal packing. The angles between the normals to the π-cyclopentadienyl rings lie in the

Table 6. Hydrogendi(bis- $\pi-c y c l o p e n t a d i e n y l)-L-c y s t e i n a t o m o l y b d e n u m(I V) ~ h e x a f l u o r o p h o s p h a t e, ~ i n t e r a t o m i c ~ d i s-~$ tances and interbond angles
(a) In the PF_{6}^{-}ion

$\mathrm{P}(1)-\mathrm{F}(1)$	$1.50(5) \AA$
$\mathrm{P}(1)-\mathrm{F}(2)$	$1.66(3)$
$\mathrm{P}(1)-\mathrm{F}(3)$	$1.68(7)$
$\mathrm{P}(1)-\mathrm{F}(4)$	$1.49(3)$
$\mathrm{P}(1)-\mathrm{F}(5)$	$1.67(4)$
$\mathrm{P}(1)-\mathrm{F}(6)$	$1.53(4)$
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(2)$	$174(2)^{\circ}$
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(3)$	$90(3)$
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(4)$	$87(2)$
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(5)$	$90(2)$

(b) In the $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoSCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COO}_{2} \mathrm{H}^{+}\right.$ion

$\mathrm{Mo}(1)-\mathrm{S}(2)$	$2 \cdot 45$ (1) \AA
$\mathrm{Mo}(1)-\mathrm{N}(1)$	$2 \cdot 14$ (3)
$\mathrm{Mo}(1)-\mathrm{C}(11)$	$2 \cdot 31$ (3)
$\mathrm{Mo}(1)-\mathrm{C}(12)$	2.33 (3)
$\mathrm{Mo}(1)-\mathrm{C}(13)$	$2 \cdot 35$ (5)
$\mathrm{Mo}(1)-\mathrm{C}(14)$	$2 \cdot 42$ (5)
$\mathrm{Mo}(1)-\mathrm{C}(15)$	$2 \cdot 27$ (4)
$\mathrm{Mo}(1)-\mathrm{C}(41)$	2.36 (4)
$\mathrm{Mo}(1)-\mathrm{C}(42)$	2.29 (4)
$\mathrm{Mo}(1)-\mathrm{C}(43)$	$2 \cdot 24$ (6)
$\mathrm{Mo}(1)-\mathrm{C}(44)$	2.38 (7)
$\mathrm{Mo}(1)-\mathrm{C}(45)$	$2 \cdot 35$ (5)
$\mathrm{Mo}(2)-\mathrm{S}(1)$	2.48 (1)
$\mathrm{Mo}(2)-\mathrm{N}(2)$	$2 \cdot 32$ (3)
$\mathrm{Mo}(2)-\mathrm{C}(21)$	$2 \cdot 23$ (4)
$\mathrm{Mo}(2)-\mathrm{C}(22)$	2.38 (4)
$\mathrm{Mo}(2)-\mathrm{C}(23)$	$2 \cdot 28$ (4)
$\mathrm{Mo}(2)-\mathrm{C}(24)$	$2 \cdot 41$ (5)
$\mathrm{Mo}(2)-\mathrm{C}(25)$	$2 \cdot 21$ (3)
$\mathrm{Mo}(2)-\mathrm{C}(31)$	$2 \cdot 29$ (3)
$\mathrm{Mo}(2)-\mathrm{C}(32)$	$2 \cdot 29$ (4)
$\mathrm{Mo}(2)-\mathrm{C}(33)$	2.37 (4)
$\mathrm{Mo}(2)-\mathrm{C}(34)$	2.33 (4)
$\mathrm{Mo}(2)-\mathrm{C}(35)$	2.33 (3)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 40$ (5)
$\mathrm{C}(11)-\mathrm{C}(15)$	$1 \cdot 41$ (5)
C(12)-C(13)	$1 \cdot 35$ (6)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 41$ (7)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 39$ (6)

$\mathrm{F}(1)-\ldots \mathrm{P}(1)-\ldots \mathrm{F}(6)$	97 (2) ${ }^{\circ}$
$F(2)-\ldots P(1)-\mathrm{F}(3)$	92 (2)
$F(2)---P(1)--\quad F(4)$	91 (2)
$F(2)-\mathrm{P}(1)--\mathrm{F}(5)$	85 (2)
$F(2)--P(1)-$ F (6)	89 (2)
$F(3)-$ P(1)--F(4)	176 (2)
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(5)$	84 (2)
$F(3)-\mathrm{P}(1)--\mathrm{F}(6)$	85 (2)
$\mathrm{F}(4)--\mathrm{P}(1)--\mathrm{F}(5)$	93 (2)
$\mathrm{F}(4)-$ P(1)--F(6)	98 (2)
$\mathrm{F}(5)-\ldots \mathrm{P}(1)--\mathrm{F}(6)$	167 (2)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.39 (4) \AA
$\mathrm{C}(31)-\mathrm{C}(33)$	$1 \cdot 38$ (5)
$\mathrm{C}(32)-\mathrm{C}(34)$	$1 \cdot 41$ (5)
C(33)--C(35)	$1 \cdot 42$ (5)
$\mathrm{C}(34)-\mathrm{C}(35)$	$1 \cdot 41$ (5)
$\mathrm{C}(31)-\mathrm{C}(33)-\mathrm{C}(35)$	$108(4)^{\circ}$
C(33)--C(35)--C(34)	106 (3)
C(35)-- $\mathrm{C}(34)-\mathrm{C}(32)$	109 (3)
C(34)---C(32)--C(31)	106 (4)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(33)$	110 (4)
$\mathrm{S}(2)-\mathrm{C}(1)$	1.86 (6) \AA
$\mathrm{C}(1)-\mathrm{C}(2)$	1.33 (7)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 48$ (6)
$\mathrm{C}(2)-\mathrm{N}(1)$	1.59 (6)
$\mathrm{C}(3)-\mathrm{O}(1)$	$1 \cdot 30$ (5)
$\mathrm{C}(3)-\mathrm{O}$ - 2)	$1 \cdot 32$ (4)
$\mathrm{O}(2)-\mathrm{O}(3)$	$2.47 \text { (4) }$ (hydrogen bond)
$\mathrm{O}(3)-\mathrm{C}(4)$	$1 \cdot 32$ (4)
$\mathrm{O}(4)-\mathrm{C}(4)$	$1 \cdot 17$ (5)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.56 (6)
$\mathrm{C}(5)-\mathrm{N}(2)$	$1 \cdot 42$ (6)
$\mathrm{C}(5)-\ldots-\mathrm{C}(6)$	1.59 (7)
$\mathrm{C}(6)-\ldots \mathrm{S}(1)$	$1 \cdot 80$ (6)
$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{S}(2)$	80 (1) ${ }^{\circ}$
$\mathrm{Mo}(1)--\mathrm{S}(2)--\mathrm{C}(1)$	98 (2)

Table 6 (cont.)

$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	$105(2)^{\circ}$	$\mathrm{S}(2) \ldots \mathrm{C}(1) \ldots \mathrm{C}(2)$	114 (4)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	111 (3)	$\mathrm{C}(1) \ldots \mathrm{C}(2)-\mathrm{N}(1)$	109 (4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	107 (4)	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Mo}(1)$	119 (2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	107 (4)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(1)$	113 (3)
$C(14)-C(15)-C(11)$	109 (4)	$\mathrm{C}(2) \cdots \mathrm{C}(3) \cdots \mathrm{O}(1)$	122 (3)
		$\mathrm{C}(2) \ldots \mathrm{C}(3) \ldots \mathrm{O}(2)$	115 (3)
C(41)-C(42)	1.41 (6) \AA A	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{O}(2)$	115 (3)
C(41) - C(43)	1.41 (7)	$\mathrm{C}(3)-\mathrm{O}(2) \cdots \mathrm{O}(3)$	117 (2)
$\mathrm{C}(42)-\mathrm{C}(44)$	$1 \cdot 38$ (8)	$\mathrm{O}(2) \cdots \mathrm{O}(3)-\mathrm{O}(4)$	122 (3)
C(43)-C(45)	1.41 (7)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	132 (4)
C(44) - C(45)	1.38 (9)	$\mathrm{O}(4) \cdots \mathrm{C}(4) \cdots \mathrm{C}(5)$	116 (4)
		$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	111 (4)
C(41) - C(43)-C(45)	$108(5)^{\circ}$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(1)$	109 (4)
C(43) - C(45)-C(44)	108 (5)	$\mathrm{C}(6)-\mathrm{S}(1)-\mathrm{Mo}(2)$	106 (2)
C(45) - C(44)-C(42)	108 (5)	$\mathrm{S}(1)-\mathrm{Mo}(2)-\mathrm{N}(2)$	78 (1)
C(44) - C(42)-C(41)	109 (4)	$\mathrm{Mo}(2)-\mathrm{N}(2)-\mathrm{C}(5)$	116 (3)
C(42) - C(41)-C(43)	105 (4)		
		$\mathrm{S}(1) \cdots \cdot \mathrm{C}(24)$	$2.98 \AA$
$\mathrm{C}(21)-\mathrm{C}(22)$	1.36 (5) \AA A	$\mathrm{S}(1) \cdots \cdot \mathrm{C}(35)$	$3 \cdot 03$
$\mathrm{C}(21)-\mathrm{C}(23)$	$1 \cdot 45$ (5)	$\mathrm{S}(2) \cdots \cdot \mathrm{C}(15)$	$2 \cdot 98$
$\mathrm{C}(22)-\mathrm{C}(24)$	$1 \cdot 40$ (6)	$\mathrm{S}(2) \cdots \cdot \mathrm{C}(42)$	$3 \cdot 00$
$\mathrm{C}(23)-\mathrm{C}(25)$	$1 \cdot 37$ (6)	$\mathrm{N}(1) \cdots \cdot \mathrm{C}(14)$	2.93
$\mathrm{C}(24)-\mathrm{C}(25)$	1.43 (7)	$\mathrm{N}(1) \cdots \cdot \mathrm{C}(44)$	$2 \cdot 74$
		$\mathrm{N}(2) \cdots \cdot \mathrm{C}(22)$	3.01
$\mathrm{C}(21)-\mathrm{C}(23)-\mathrm{C}(25)$	$107(3)^{\circ}$	$\mathrm{N}(2) \cdots \mathrm{C}(33)$	$2 \cdot 87$
$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{C}(24)$	108 (4)	$\mathrm{C}(12) \cdots \mathrm{C}(42)$	$2 \cdot 74$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(22)$	106 (4)	$\mathrm{C}(23) \cdots \mathrm{C}(32)$	2.78
$\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{C}(21)$	110 (3)		
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(23)$	107 (3)		

There are no intermolecular hydrogen bonds or very short contact distances.
range 130.9-133.9${ }^{\circ}$ (Table 9) for the Oxford work but in the hydride the angle is 145.9°. No regular pattern has been observed in the carbon-carbon bond length in the π-cyclopentadienyl rings of the amino acid complexes save that the more accurate the structure anal-
ysis, the more nearly equal are the observed bond lengths. In the hydride a pattern suggesting significant electron localization was found. We have concluded that the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoH}_{2}$ system is significantly different from the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo} X_{2}$ systems we have examined and we believe that the differences might be attribut-

Table 7. Bis- π-cyclopentadienylglycinatomolybdenum(IV) chloride monohydrate, interatomic distances and angles
Estimated standard deviations in parentheses.
(a) Bond lengths and interbond angles

Mo---O(1)	2.10 (1) \AA	C(21)-C(22)	1.42 (4) \AA
Mo--N	$2 \cdot 26$ (1)	$\mathrm{C}(21)-\mathrm{C}(25)$	1.42 (4)
Mo--C(11)	$2 \cdot 36$ (2)	$\mathrm{C}(22) \mathrm{C}(23)$	$1 \cdot 40$ (4)
Mo--C(12)	$2 \cdot 30$ (3)	$\mathrm{C}(23)-\mathrm{C}(24)$	$1 \cdot 28$ (5)
Mo--C(13)	$2 \cdot 31$ (3)	$\mathrm{C}(24)$ - $\mathrm{C}(25)$	1.27 (5)
Mo--C(14)	$2 \cdot 28$ (3)		
Mo---C(15)	$2 \cdot 32$ (3)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(25)$	104 (2) ${ }^{\circ}$
Mo--C(21)	$2 \cdot 27$ (3)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	105 (2)
Mo--C(22)	$2 \cdot 29$ (3)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	109 (3)
Mo---C(23)	$2 \cdot 27$ (3)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	113 (3)
Mo--C(24)	2.34 (4)	$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{C}(24)$	109 (3)
Mo-C(25)	$2 \cdot 34$ (3)		

		$\mathrm{C}(1)-\mathrm{O}(1)$ $\mathrm{C}(11)-\mathrm{C}(12)$ $\mathrm{C}(11)-\mathrm{C}(15)$	$1.41(4)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.32(2)^{\circ}$		
$\mathrm{C}(12)-\mathrm{C}(3)$	$1.30(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.51(3)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.42(4)$	$\mathrm{C}(2)-\mathrm{N}$	$1.51(3)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.42(4)$	$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{N}$	$74 \cdot 1(5)^{\circ}$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15) 111(2)^{\circ}$	$\mathrm{Mo}-\mathrm{O}(1)-\mathrm{C}(1)$	$120(1)$	
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13) 109(2)$			
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14) 104(2)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$121(2)$	
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$110(2)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$119(2)$
$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(14) 106(2)$	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$119(2)$	
		$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	$104(2)$

Fig. 4. Bis- π-cyclopentadienylsarcosinatomolybdenum(IV) chloride methanolate: the crystal structure seen in projection down \mathbf{c}.

Table 7 (cont.)
(b) Hydrogen bonds and close contacts

$\mathrm{N} \cdot \cdots \cdot \mathrm{Cl}$	3.25 A	$\mathrm{N} \cdot \cdots \cdot \mathrm{O}\left(2^{\text {iii }}\right)$	$3.81 \AA$
$\mathrm{Mo}-\mathrm{C} \cdot \mathrm{C} \cdot \mathrm{Cl}$	115°	Mo-- ${ }^{\text {- }}$.	- $\mathrm{O}\left(2^{\text {i1i }}\right) 123^{\circ}$
$\mathrm{C}(2)--\mathrm{N} \cdot \cdots \cdot \mathrm{Cl}$	104	$\mathrm{C}(2)-\ldots \mathrm{N} \cdot{ }^{\text {d }}$	- O($2^{\text {iii) }}$) 118
		$\mathrm{Cl}^{-} \cdots \cdots \mathrm{N} \cdot \cdots$	- $\mathrm{O}\left(2^{\text {iii) }}\right.$) 72
$\mathrm{O}(3) \cdots \mathrm{Cl}$	$3 \cdot 11$		
$\mathrm{O}(3) \cdots \mathrm{Cl}^{\mathrm{i}}$	$3 \cdot 21$	$\mathrm{C}(13) \cdots \mathrm{C}(22)$	2.76 A
$\mathrm{Cl}^{-\cdots \cdot \mathrm{O}}(3) \cdots \mathrm{Cl}^{\text {i }}$	129°	$\mathrm{N} \cdot \cdots \cdot \mathrm{C}(15)$	$2 \cdot 80$
$\mathrm{N} \cdot \cdots \cdot \mathrm{O}\left(2^{\text {ii }}\right)$	$3 \cdot 11$	$\mathrm{N} \cdot \cdots \cdot \mathrm{C}(24)$	2.91
		$\mathrm{O}(1) \cdots \mathrm{C}(11)$	2.84
$\mathrm{Mo}-\mathrm{N} \cdot \mathrm{Cl} \mathrm{O}^{\text {(2i) }}$	108°	$\mathrm{O}(1) \cdots \mathrm{C}(25)$	2.75
$\mathrm{C}(2)--\mathrm{N} \cdot \cdots \cdot \mathrm{O}\left(2^{\text {ii }}\right)$		$\mathrm{O}(1) \cdots \mathrm{C}(21)$	3.05
$\mathrm{Cl}^{-} \cdots \cdot \mathrm{N} \cdots \cdots \mathrm{O}\left(2^{\text {ii }}\right)$	131		

Atom related to that in Table 3 by the following translations:i $-x, \frac{1}{2}-y,-\frac{1}{2}+z$; ii $1-x, 1-y, 1+z$; iii $x, y,-1+z$.
able to the small size and remarkable σ-donor properties of the hydrido ligands.

The $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ Mo groups in the amino acid complexes, though similar in dimensions, differ in confor-

(a)

(c)

(b)

(d)

(e)

Fig. 5. View of the bis- π-cyclopentadienyl groups normal to the MoX X_{2} plane. (a) Hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) chloride; (b) and (c) hydro-gendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) hexafluorophosphate; (d) bis- π-cyclopentadienylglycinatomolybdenum(IV) chloride hydrate; (e) bis- π-cyclopentadienylsarcosinatomolybdenum(IV) chloride methanolate.
mation (Fig. 5). Previously (Knox \& Prout, 1969b) it was believed that the size of the ligands X would alone determine the conformation and angle of inclination of the π-cyclopentadienyl rings. Thus for the hydride this angle would have its smallest value, and it would increase with increasing size of X. Similarily, the eclipsed conformation was expected when X was small and staggered when X was larger. However, the angle of inclination and the conformation are independent of the nature of X. Indeed, for the cysteine complex the rings are staggered when the counter ion is chloride but eclipsed when it is hexafluorophosphate. There is in these amino-acid complexes no correlation between the carbon-carbon bond length in the π-cyclopentadienyl group and the molybdenum-carbon bond length. However, there is for a given π-cyclopentadienyl group a possible correlation between the molybdenum-carbon bond length and the position of the carbon atom relative to an approximate vertical mirror plane through the molybdenum atom (say, the plane through

Table 8. Bis-л-cyclopentadienylsarcosinatomoylbdenum(IV) chloride methanolate, interatomic distances and angles
Estimated standard deviations in parentheses.
(a) Bond lengths and interbond angles

Mo--O(1)	$2 \cdot 10$ (2) \AA A	$\mathrm{C}(21)-\mathrm{C}(22)$	1.40 (4) \AA
Mo- N	$2 \cdot 23$ (2)	$\mathrm{C}(21)-\mathrm{C}(25)$	$1 \cdot 42$ (4)
Mo- $\mathrm{C}(11)$	$2 \cdot 32$ (2)	$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 39$ (4)
Mo--C(12)	$2 \cdot 27$ (3)	C(23)-C(24)	$1 \cdot 43$ (4)
Mo--C(13)	$2 \cdot 26$ (2)	$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 46$ (4)
Mo--C(14)	2.34 (2)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(25)$	106 (2) ${ }^{\circ}$
Mo-C(15)	$2 \cdot 40$ (2)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	109 (2)
Mo--C(21)	2.28 (3)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	112 (2)
Mo--C(22)	2.33 (3)	C(23)-C(24)-C(25)	101 (2)
Mo--C(23)	2.30 (3)	$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{C}(24)$	111 (2)
Mo--C(24)	2.31 (2)	$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 34$ (3) \AA
Mo-C(25)	$2 \cdot 29$ (3)	$\mathrm{C}(1)-\mathrm{O}(2)$	$1 \cdot 23$ (3)
		$\mathrm{C}(1)-\mathrm{C}(2)$	1.48 (3)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 37$ (4)	$\mathrm{C}(2)-\mathrm{N}$	1.48 (3)
$\mathrm{C}(11)-\mathrm{C}(15)$	$1 \cdot 35$ (3)	$\mathrm{N}-\mathrm{C}(3)$	1.51 (3)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 40$ (4)	$\mathrm{O}-\mathrm{Mo}-\mathrm{N}$	73.4 (6) ${ }^{\circ}$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 40$ (3)	$\mathrm{Mo}-\mathrm{O}(1)-\mathrm{C}(1)$	121 (1)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 42$ (3)	$\mathrm{Mo}-\mathrm{N}-\mathrm{C}(2)$	113 (1)
		$\mathrm{Mo}-\mathrm{N}-\mathrm{C}(3)$	120 (1)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15)$	113 (2) ${ }^{\circ}$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	120 (2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	106 (2)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	116 (2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	108 (2)	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	123 (2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	108 (2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	108 (2)
$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(14)$	105 (2)	$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(3)$	111 (2)

Solvent $\mathrm{CH}_{3} \mathrm{OH}$
$\mathrm{C}(4)-\mathrm{O}(3) \quad 1.25$ (7) \AA
(b) Hydrogen bonds and close contacts

$\mathrm{O}(3) \cdots \mathrm{Cl}^{1}$	$3.05 \AA$	$\mathrm{O}(1) \cdots \mathrm{C}(13)$	$2.85 \AA$
$\mathrm{C}(4)-\mathrm{O}(3) \cdots \cdot \mathrm{Cl}^{\mathrm{i}}$	105°	$\mathrm{O}(1) \cdots \mathrm{C}(12)$	$2 \cdot 90$
$\mathrm{N} \cdot \cdots \cdot \mathrm{O}\left(2^{\text {ii }}\right)$	2.91 A	N $\cdots \cdots$ C(23)	$2 \cdot 90$
$\mathrm{C}(2)-\mathrm{N} \cdot \cdots \cdot \mathrm{O}\left(2^{\text {ii }}\right)$	104°	N $\cdot \cdots \cdot \mathrm{C}$ (14)	2.99
$\mathrm{C}(3)-\mathrm{N} \cdot \cdots \cdot \mathrm{O}\left(2^{\text {ii }}\right)$	98°	N......C(13)	3.04
$\mathrm{Mo}-\mathrm{N} \cdots \cdots \mathrm{O}\left(2^{\text {ii }}\right)$	109	$\mathrm{C}(11) \cdots \mathrm{C}(25)$	$2 \cdot 86$
$\mathrm{O}(1) \cdots \mathrm{C}(22)$	$2 \cdot 81$ A	$\mathrm{C}(15) \cdots \mathrm{C}(25)$	2.94
		$\mathrm{C}(11) \cdots \mathrm{C}(21)$	$3 \cdot 10$

Atom related to that in Table 4 by the translations:
${ }_{1} \frac{1}{2}-x,-y,-\frac{1}{2}+z$; ii $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$.

Table 9. Bis- π-cyclopentadienylmolybdenum groups
I, perpendicular distance from the molybdenum atom to the plane of the π-cyclopentadienyl groups; II, the angle at the molybdenum between the normals to the π-cyclopentadienyl groups; III, the angle plane of the normals and the plane of the MoX_{2} group.

Compound	I		11	III
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoS}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$	1.999 A	$1.993 \AA$	$132.5{ }^{\circ}$	$88.8{ }^{\circ}$
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}+\mathrm{I}^{-}$	1.976	2.002	$130 \cdot 9$	88.8
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}\right]_{2} \mathrm{H}^{+} \mathrm{Cl}^{-}$	1.981	1.980	$133 \cdot 7$	88.6
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}\right]_{2} \mathrm{H}^{+} \mathrm{PF}_{6}{ }^{-}$	2.01	2.00	130	89
	1.96	1.99	133	86
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COO}\right]^{+} \mathrm{Cl}^{-} . \mathrm{CH}_{3} \mathrm{OH}$	1.991	1.962	133.9	85.5
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNH}_{2} \mathrm{CH}_{2} \mathrm{COO}\right]^{+} \mathrm{Cl}^{-} . \mathrm{H}_{2} \mathrm{O}$	1-993	1.986	$132 \cdot 2$	$84 \cdot 3$

Table 10. π-Cyclopentadienyl planes
Equation to plane followed by the distances of atoms from the plane.
(i) Hydrogen dibis- π-cyclopentadienyl-L-cysteinatomolybdenum(IV) chloride
(a) Cyclopentadienyl ring $\mathrm{C}(11) \sim \mathrm{C}(15)$
$-0.9651 x-0.1117 y-0.2367 z-0.3191=0$

$\mathrm{C}(11)$	$-0.018 \AA$
$\mathrm{C}(12)$	+0.015
$\mathrm{C}(13)$	-0.006
$\mathrm{C}(14)$	-0.005
$\mathrm{C}(15)$	0.015

(b) π-Cyclopentadienyl ring $\mathrm{C}(21) \sim \mathrm{C}(25)$
$0.5412 x+0.7640 y+0.3513 z-6.0512=0$

$\mathbf{C}(21)$	$0.011 \AA$
$\mathrm{C}(22)$	0.001
$\mathrm{C}(23)$	-0.012
$\mathrm{C}(24)$	0.019
$\mathrm{C}(25)$	-0.019

(c) Molybdenum-sulphur-nitrogen plane

$$
-0.7960 x-0.5106 y-0.3252 z-3.5560=0
$$

(ii) Hydrogen dibis- π-cyclopentadienyl-L-cysteinatomolybdenum(IV) hexafluorophosphate
X, Y and Z refer to the right handed orthogonal axes a^{*}, b^{\prime} and c when b^{\prime} is on the same side of the $a^{*} c$ plane as b.
(a) π-Cyclopentadienyl ring $\mathrm{C}(11) \sim \mathrm{C}(15)$
$0 \cdot 199 X-0.968 Y+0 \cdot 215 Z+3 \cdot 193=0$

$\mathrm{C}(11)$	$-0.019 \AA$
$\mathrm{C}(12)$	-0.017
$\mathrm{C}(13)$	-0.046
$\mathrm{C}(14)$	-0.057
$\mathrm{C}(15)$	0.048

(b) π-Cyclopentadienyl ring $\mathrm{C}(21) \sim \mathrm{C}(25)$
$0.782 X-0.435 Y+0.323 Z-4.487=0$

$\mathrm{C}(21)$	$0.053 \AA$
$\mathrm{C}(22)$	-0.009
$\mathrm{C}(23)$	-0.078
$\mathrm{C}(24)$	-0.039
$\mathrm{C}(25)$	0.073

(c) π-Cyclopentadienyl ring $\mathrm{C}(31) \sim \mathrm{C}(35)$
$0 \cdot 211 X-0 \cdot 970 Y+0 \cdot 178 Z-7 \cdot 935=0$

$\mathrm{C}(31)$	$0.013 \AA$
$\mathrm{C}(32)$	-0.004
$\mathrm{C}(33)$	0.024
$\mathrm{C}(34)$	0.019
$\mathrm{C}(35)$	-0.026

Table 10 (cont.)
(d) π-Cyclopentadienyl ring $\mathrm{C}(41) \sim \mathrm{C}(45)$

$$
0.799 X-0.472 Y+0.252 Z-10 \cdot 33=0
$$

$\mathrm{C}(41)$	$0.069 \AA$
$\mathrm{C}(42)$	-0.056
$\mathrm{C}(43)$	-0.057
$\mathrm{C}(44)$	0.020
$\mathrm{C}(45)$	0.024

(e) Molybdenum-sulphur-nitrogen planes at $\mathrm{Mo}(1)-0.553 X+0.793 Y+0.219 Z+2.901=0$ at $\mathrm{Mo}(2) \quad 0.487 X+0.793 Y-0.340 Z+6.937=0$
(iii) Bis- π-cyclopentadienylglycinatomolybdenum(IV) chloride hydrate
X, Y and Z refer to the orthogonal set of axes a, b^{*} and c.
(a) π-Cyclopentadienyl ring $\mathrm{C}(11) \sim \mathrm{C}(15)$

$$
\begin{array}{cc}
-0.9217 X-0.3461 Y+0.1715 Z-1.8767=0 \\
\mathrm{C}(11) & -0.029 \AA \\
\mathrm{C}(12) & 0.020 \\
\mathrm{C}(13) & -0.004 \\
\mathrm{C}(14) & -0.012 \\
\mathrm{C}(15) & 0.026
\end{array}
$$

(b) π-Cyclopentadienyl ring $\mathrm{C}(21) \sim \mathrm{C}(25)$

$$
-0.3317 X-0.8566 Y+0.3951 Z-9.5124=0
$$

$\mathrm{C}(21)$	$-0.022 \AA$
$\mathrm{C}(22)$	0.027
$\mathrm{C}(23)$	-0.024
$\mathrm{C}(24)$	0.010
$\mathrm{C}(25)$	0.009

(c) Nitrogen-oxygen $\mathrm{O}(1)$ plane

$$
-0.6828 X-0.6376 Y+0.3567 Z-5.9524=0
$$

(iv) Bis- π-cyclopentadienylsarcosinatomolybdenum(IV) chloride methanolate
(a) π-Cyclopentadienyl ring $\mathrm{C}(11) \sim \mathrm{C}(15)$

$$
-0.8608 x-0.3621 y+0.3576 z-2.1781=0
$$

$\mathrm{C}(11)$	$-0.004 \AA$
$\mathrm{C}(12)$	0.002
$\mathrm{C}(13)$	0.001
$\mathrm{C}(14)$	-0.004
$\mathrm{C}(15)$	0.005

(b) π-Cyclopentadienyl ring $\mathrm{C}(21) \sim \mathrm{C}(25)$

$\mathrm{C}(21)$	$0.034 \AA$
$\mathrm{C}(22)$	-0.024
$\mathrm{C}(23)$	0.005
$\mathrm{C}(24)$	0.016
$\mathrm{C}(25)$	-0.031

(c) Molybdenum-oxygen $\mathrm{O}(1)$-nitrogen plane. $-0.8427 x-0.0553 y+0.5355 z-2.5252=0$.

C(13), Mo and C(25) in Fig. 5d). It appears that for any $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}$ group, the carbon atom closest to the postulated mirror plane is nearer ($2 \cdot 27-2 \cdot 28 \AA$ mean $)^{*}$ to the molybdenum atom than the pair of carbon atoms bonded to it ($2 \cdot 29-2 \cdot 30 \AA$ mean) and significantly nearer ($2 \cdot 34-2 \cdot 36 \AA$ mean) than the second pair of carbon atoms. For the cysteine- Cl , glycine- Cl , sarcosine- Cl and others this is equally true if the carbon atom in the mirror plane is towards or away from the other ligands X and if the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ Mo group is eclipsed or staggered (see Tables 5, 8 and 10). The agreement is not so gocd for the less accurate cysteine- PF_{6} structure.

(ii) The amino-acid ligands

In each compound the bis- π-cyclopentadienylmolybdenum group is chelated by an amino acid and forms a $\mathrm{Mo}-\mathrm{N}$ bond. The lengths of these bonds in the three more accurate analyses and in the 2 -aminoethanethiol complex (Knox \& Prout, 1969c) lie in the region $2 \cdot 21$ to $2 \cdot 26 \AA$, but for those in the less accurate cysteine PF_{6} analysis the corresponding lengths are 2.14 and $2.32 \AA$. In the $\mathrm{Mo}(\mathrm{V})$ complexes $\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{4}$ (cysteine) $)_{2} .2 \mathrm{H}_{2} \mathrm{O}$ (Knox \& Prout, 1969a), $\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{4}$ (histidine) $2 . \mathrm{H}_{2} \mathrm{O}$ (Delbaere \& Prout, 1971) and MoO_{2} (cysteine ethyl ester) (Drew \& Kay, 1971), the Mo-N bond lengths were also in the $2 \cdot 21-2 \cdot 26 \AA$ region. The Mo-S bonds in the cysteine complexes (2.446 in cy-steine- Cl and 2.45 and $2.48 \AA$ in cysteine- PF_{6}) are not significantly different from those observed in the molybdenum(V) complexes bis- π-cyclopentadienyl(tolu-ene-3,4-dithiolato)molybdenum (2.434 and $2.431 \AA$) (Knox \& Prout, 1969b), bis- π-cyclopentadienyl)molybdenum iron(II)dichloride (Cameron \& Prout, 1972a), but significantly shorter than the $\mathrm{Mo}(\mathrm{V})-\mathrm{S}$ bond ($2.490 \AA$) in the oxomolybdenum(V) cysteine complex (Knox \& Prout, 1969c). The Mo-O bond in glycine- Cl and sarcosine- Cl are identical in length ($2 \cdot 10$ and $2 \cdot 10 \AA$), and in very good agreement with $2 \cdot 11$ and $2 \cdot 15 \AA \mathrm{Mo}-\mathrm{O}$ (oxalato) bonds in the $\mathrm{Mo}(\mathrm{VI})$ complex $\mathrm{BaMo}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Cotton \& Morehouse, 1965). The $X-\mathrm{Mo}-X$ angles, cysteine- $\mathrm{Cl} 77 \cdot 0^{\circ}$, cysteine- $\mathrm{PF}_{6} 80$ and 78°, glycine-Cl $74 \cdot 1^{\circ}$ and sarco-sine-Cl 73.4° are less than those found in the complexes with sulphur or chlorine ligands (Green, Green \& Prout, 1972) but comparable to the angle of 75.7° found in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{CH}_{3}^{+}$ (Prout, Critchley \& Forder, 1972). The bite of the amino-acid ligand chelating through N and O provides the correct bond lengths and angles at the molybdenum without any observable distortion of the ligand. In both cysteine complexes the carboxylate groups are linked by a short hydrogen bond, in cysteine- PF_{6} one $2.47 \AA$ long across the pseudo inversion centre and the other in cysteine-Cl, $2 \cdot 46 \AA$ long across a crystallographic

[^2]diad axis. These hydrogen bonds are similar to those found in many acid salts (Spcakman, 1967; Sime, Speakman \& Parthasarathy, 1970; Kroon, Kanters \& Peerdeman, 1971). In the cysteine-Cl the hydrogen atom is indicated in the final difference map by two peaks of 0.2 e. \AA^{-3} separated by about $1 \AA$ and 0.3 \AA above the line joining $\mathrm{O}(2)$ and $\mathrm{O}\left(2^{\prime}\right)$. In contrast, the other hydrogen atoms in the structure, located at $R=0.042$, had well resolved peaks with heights of $0 \cdot 3-0.8$ e. \AA^{-3}. According to the Nakamoto-Margo-shes-Rundle curve (Pimentel \& McClellan, 1960; Currie, Speakman \& Curry, 1967), for O-H \cdots O hydrogen bonds studied by neutron diffraction, $\mathrm{O}-\mathrm{H}$ bond length increases as the $\mathrm{O} \cdots \mathrm{O}$ distance decreases, and Hamilton \& Ibers (1968) state that for O \cdots O distances less than $2.5 \AA$ the hydrogen atom may be symmetrically located between the oxygen atoms. However, in the case of potassium hydrogen succinate, X-ray diffraction studies (McAdam, 1969) have shown that the electron density of the hydrogen atom in a short $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ bond may be considered as two separate maxima, whereas the neutron diffraction studics on the same crystal modification of this compound (Currie \& Speakman, 1970) indicated that the proton of the hydrogen atom is located midway between the two oxygen atoms. Kroon et al. (1971) found that the electron density of the hydrogen atom in one if the two short $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ bonds in potassium hydrogen meso-tartrate dihydrate appeared as two well resolved maxima acentric with respect to the $\mathrm{O} \cdots \mathrm{O}$ axis so that the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle is 123° while the $\mathrm{C}-\mathrm{O} \cdots \mathrm{O}$ angle is 129°. In the molybdenum cysteine dimer in cysteine-Cl observed electron density of the hydrogen atom is in accordance with previous observation and may represent a true phenomenon, but the position of the proton remains undetermined.
The bond lengths and interbond angles found for the cysteine ligand in cysteine- Cl are in good agreement with those obtained for
$\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{4}\left[\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}\right] 5 \mathrm{H}_{2} \mathrm{O}$ by Knox \& Prout (1969a) and for L-cysteine by Harding \& Long (1968). In one of the two molecules in the asymmetric unit of L-cysteine, the nitrogen and sulphur atoms are cis with respect to the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond and in the other they are trans. The former has the same conformation as those in cysteine- Cl and
$\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{4}\left[\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}\right] 5 \mathrm{H}_{2} \mathrm{O}$, but the conformation of the cysteine in cysteine- PF_{6} differs from these and the second type of molecule in L-cysteine. In cysteine- PF_{6} the sulphur and nitrogen atoms are cis with respect to the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond but hydrogen and carboxyl sites on C_{α} are interchanged relative to those in cysteine in cysteine- Cl (see Figs. 1, 2 and 6). With respect to a hypothetical (2 -aminocthanethiolato) molybdenum five-membered chelate ring, the carboxylate group at C_{α} is axial in cysteine- Cl and
$\left(\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{4}\left[\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}\right] .5 \mathrm{H}_{2} \mathrm{O}\right)$, and equatorial in cysteine- PF_{6}. In cysteine- PF_{6} the carboxylate groups are far away from the metal, and the metal
atom might reasonably be thought of as in an equilibrium position relative to the $\mathrm{C}_{\beta}-\mathrm{C}_{\alpha}-\mathrm{N}$ plane [Fig. $6(a)$, (b)]. The cysteine conformation found in cysteine-Cl brings the carboxylate oxygen atom closer to the molybdenum. The molybdenum atom is, however, coordinately saturated and is repelled away from the oxygen towards the $\mathrm{C}_{\beta}-\mathrm{C}_{\alpha}-\mathrm{N}$ plane [Fig. $6(c)$]. However, in $\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{4}\left[\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}\right] .5 \mathrm{H}_{2} \mathrm{O}$ the cysteine acts as a tridentate ligand and the molybdenum is attracted towards the carboxylate oxygen atom and away from the $\mathrm{C}_{\beta}-\mathrm{C}_{\alpha}-\mathrm{N}$ plane. In the three complexes there is little apparent strain and distorsion in the skeleton of the ligand measured in terms of the interbond angles. In Fig. 7 the various forms of the cysteine ligand are shown schematically projected down the $\mathrm{C}_{\alpha}-\mathrm{C}$ (carboxylate) bond. In one of the cysteine ligands in cysteinePF_{6}, in cysteine- Cl and in the cis form of free cysteine [Fig. 7(b), (c) and (e)] the amino group is nearly coplanar with the carboxylate. In the other ligand in cysteinePF_{6}, in $\mathrm{Na}_{2} \mathrm{Mo}_{2}\left[\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}\right) \mathrm{COO}\right]_{2} .5 \mathrm{H}_{2} \mathrm{O}$ in the trans form of free cysteine [Fig. 7(a), (d) and (f)] the amino group is $30-40^{\circ}$ out of the carboxylate plane. For cysteine- PF_{6} in Fig. 7(a) and (b) the O-C-O system is not linear in projection. No significance is attached to this as it results from the inaccuracy of the positions of $C(2)$ and $C(5)$ which are more nearly planar than is chemically reasonable.

In the glycine- Cl the dimensions and dihedral angles [Fig. 8(a) and (b)] are like those of an α-glycine (Leung \& Marsh, 1958) indicating that the dimensions and conformation are not significantly affected upon chelation to molybdenum.

The sarcosine ligand does not appear to have been described except as sarcosine hydrochloride, the structure of which was dctermined by Bhattacharyya, Mazumdar \& Saha (1968). The dimensions of the sarcosine ligand are not significantly differeat from those of the sarcosine cation in the hydrochloride. The dihedral angles are given for the ligand and the cation in Fig. $8(c)$ and (d).

(iii) Intermolecular hydrogen bonding

In the cysteine- Cl (Fig. 1) the cysteine dimers are held together by the strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds parallel to the a axis. A further strong hydrogen bond exists between $\mathrm{N}-\mathrm{H}(2) \cdots \mathrm{Cl}^{-}$, as evidenced by the $\mathrm{N} \cdots \mathrm{Cl}^{-}$distance of $3 \cdot 23 \AA$, the $\mathrm{H} \cdots \mathrm{Cl}^{-}$distance of $2.30 \AA$ and the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}^{-}$angle of 175°. The other hydrogen atom bonded to nitrogen $[\mathrm{H}(1)]$ forms a weak hydrogen bond with the sulphur atom of the molecule in the above unit cell. The $\mathrm{N} \cdots \mathrm{S}(x, y, z+1)$ distance of $3.63 \AA$ is larger than the range of $3 \cdot 23-3 \cdot 52$ \AA found by Srivinasan \& Chacko (1967) for N \cdots...S hydrogen bonds, but it is less than the $3.7 \AA$ limit which they estimate for the $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ system. The $\mathrm{H} \cdots \mathrm{S}$ distance is $2.91 \AA$ and the angle $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ is 152° (angle $\mathrm{H}-\mathrm{N} \cdots \mathrm{S}, 22^{\circ}$). The $\mathrm{N} \cdots \mathrm{O}(1)$ distance is $2.73 \AA$, but the $\mathrm{H}(1) \cdots \mathrm{O}(1)$ distance is $2.35 \AA$ and the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(1)$ angle is 110° [angle $\mathrm{H}-\mathrm{N} \cdots \mathrm{O}(1), 54^{\circ}$] suggesting that no intermolecular hydrogen bond is formed between these atoms. There is also a close intramolecular contact of $3 \cdot 25 \AA$ between $C(24)$ and $\mathrm{O}(1)$, with $\mathrm{H}(15) \cdots \mathrm{O}(1)$ at $2 \cdot 22 \AA$ and the $\mathrm{C}(24)-$ $\mathrm{H}(15) \cdots \mathrm{O}(1)$ angle at 149° angle $\mathrm{H}(15)-\mathrm{C}(24) \cdots \mathrm{O}(1)$

(a)

(b)

(c)
99°

(f)
(d)
85°

Fig. 6. Schematic views, showing dihedral angles of cysteinato ligand cysteine looking down the $\mathrm{C}_{x}-\mathrm{C}_{\beta}$ bond: (a) and (b) hydrogen di(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum (IV) hexafluorophosphate at $\mathrm{Mo}(1)$ and $\mathrm{Mo}(2)$; (c) hydrogendi(bis-π-cyclopentadienyl)-L-cysteinatomolybdenum (IV) chloride; (d) di- μ-oxobis(oxocysteinato-molybdenum(V) anion; (e) cysteine (cis conformer); (f) cysteine (trans conformer).
is 20°], which is within the range for possible $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Sutor, 1963). The crystal structure may be described in terms of an infinite network of strong hydrogen bonded chains parallel to the a axis. These chains are interconnected by weak hydrogen bonds between nitrogen and sulphur atoms forming sheets perpendicular to the b axis.

Crystals of cysteine- PF_{6} have no intermolecular hydrogen bonds.

In the glycine complex, interatomic distances suggest that there is a strong hydrogen bond between the amino group of the glycine residue and the chloride ion, $\mathrm{N} \cdots \mathrm{Cl}, 3 \cdot 25 \AA$, similar to that found in cysteineCl , and that the other hydrogen atom bonded to nitrogen forms a possible bifurcated hydrogen bond between two crystallographically equivalent oxygen atoms [Table $2, \mathrm{~N} \cdot \mathrm{O}\left(2^{\prime \prime}\right) 3 \cdot 11 \AA ; \mathrm{N} \cdot \mathrm{O}\left(2^{\prime \prime \prime}\right) 3 \cdot 18 \AA$]. The water molecule forms a strong hydrogen bond to the chloride ion ($3 \cdot 11 \AA$) and there is a weak interaction $(3.21 \AA)$ of the second hydrogen atom of the water with another chloride ion.

(a)

(b)

(c)

Fig. 7. Schematic views, showing dihedral angles of cysteinato ligands and cysteine looking down the $\mathrm{C}_{\alpha}-\mathrm{C}$ (carboxylate) bond: (a) and (b) hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) hexafluorophosphate at Mo (1) and $\mathrm{Mo}(2)$; (c) hydrogendi(bis- π-cyclopentadienyl)-L-cysteinatomolybdenum(IV) chloride; (d) di- μ-oxobis(oxocysteina-to-molybdenum(V) anion; (e) cysteine (cis conformer); (f) cysteine (trans conformer).

(a)

(b)

(c)

(d)

Fig. 8. Schematic views showing dihedral angles of glycine and sarcosine ligands and anions looking down the $\mathrm{C}_{\alpha}-\mathrm{C}$ (carboxylate) bond: (a) bis- π-cyclopentadienylglycinatomolybdenum(IV) chloride hydrate; (b) glycine hydrochloride; (c) bis- π-cyclopentadienylsarcosinatomolybdenum(IV) chloride methanolate; (d) sarcosine hydrochloride.

The crystal of sarcosine- Cl is built up from chloride anions, complex cations and isolated molecules of methanol of solvation (Fig. 4). The methanol of solvation lies in a cavity in the structure, and is not well defined. The oxygen atom $\mathrm{O}(3)$ and the carbon atom $\mathrm{C}(4)$ were distinguishable because (a) the methanol was located from a difference synthesis where the peak assigned to $\mathrm{O}(3)$ was larger than that assigned to $\mathrm{C}(4)$, (b) refinement with the oxygen and carbon atoms interchanged lead to anomalous temperature factors and (c) the $3.05 \AA \mathrm{Cl} \cdots \mathrm{O}$ (3) contact may correspond to a hydroxyl group-chloride ion hydrogen bond but is too short for a chloride ion-methyl group van der Waals contact. There is a hydrogen bond $\mathrm{N} \cdots \mathrm{O}(2), 2 \cdot 91 \AA$, linking into chains complexes related by the two-fold screw axis (Fig. 4).

The authors thank the National Research Council of Canada for fellowships to L.T.J.D. and E.S.G., and C.S.I.R.O. (Australia) for a fellowship to G.B.A., and the Oxford University Computing Laboratory for facilities.

References

Bray, R. C. \& Meriwether, L. S. (1966). Nature, Lond. 212, 467.
Bhattacharyya, S. C., Mazumdar, S. K. \& Saha, N. N. (1967). Indian J. Phys. 41, 850.

Cameron, T. S. \& Prout, C. K. (1971). Chem. Commun. p. 161.

Cameron, T. S. \& Prout, C. K. (1972a). Acta Cryst. B28, 453.

Cameron, T. S. \& Prout, C. K. (1972b). J. Chem. Soc. In the press.
Cotton, F. A. \& Morehouse, S. M. (1965). Inorg. Chem. 4, 1377.
Currie, M. \& Speakman, J. C. (1970). J. Chem. Soc. (A), p. 1923.

Currie, M., Speakman, J. C. \& Curry, N. A. (1967). J. Chem. Soc. (A), p. 1862.
Delbaere, L. T. J. \& Prout, C. K. (1971). Chem. Commun. p. 162.

Drew, M. G. B. \& Kay, A. (1971). J. Chem. Soc. (A), pp. 1846, 1851.
Fewson, C. A. \& Nicholas, D. J. D. (1961). Biochim. Biophys. Acta, 49, 335.
Ford, G. (1970). D. Phil. Thesis, Oxford.
Gerloch, M. \& Mason, R. (1965). J. Chem. Soc. p. 296.
Gore, E. S. \& Green M. L. H. (1970). J. Chem. Soc. (A), p. 2315

Green, J. C., Green, M. C. H. \& Prout, C. K. (1972). Chem. Commun. p. 421.
Hamilton, W. C. \& Ibers, J. A. (1968). Hydrogen Bonding in Solids, p. 52. New York: Benjamin.
Handler, P. \& Rajagoplan, K. V. (1964). J. Biol. Chem. 239, 2027.
Harding, M. M. \& Long, H. A. (1968). Acta Cryst. B24, 1096.

Huang, T. J. \& Haight, G. P. (1969). Chem. Commun. p. 985.

International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-203, 211. Birmingham: Kynoch Press.

Knox, J. R. \& Prout, C. K. (1969a). Acta Cryst. B25, 1857.
Knox, J. R. \& Prout, C. K. (1969b). Acta Cryst. B25, 2013.
Knox, J. R. \& Prout, C. K. (1969c). Acta Cryst. B25, 2482.
Kroon, J. Kanters, J. A. \& Peerdeman, A. F. (1971). Nature, Lond. 229, 120.
Kutoglu, A. \& Kopf, H. (1970). J. Organometal. Chem. 25, 455.
Leung, Y. C. \& Marsh, R. E. (1968). Acta Cryst. 11, 17.
McAdam, A. (1969). Ph. D. Thesis, Glasgow.
Nicholas, D. J. D., Wilson, P. W., Heinen, W., Palmer, G. \& Beinert, H. (1962). Nature, Lond. 196, 433.
Pimeniel, G. C. \& McClellan, A. L. (1960). The Hydrogen Bond, p. 259. San Francisco: Freeman.

Prout, C. K., Critchley, S. R. \& Forder, R. A. (1972). Unpublished work.
Rae, A. I. M. \& Maslen, E. N. (1963). Acta Cryst. 16, 703.
Rollett, J. S. (1970). In Crystallographic Computing, pp. 167-181. Copenhagen: Munksgaard.
Sime, J. G., Speakman, J. C. \& Parthasarathy, R. (1970). J. Chem. Soc. (A), p. 1919.

Speakman, J. C. (1967). Chem. Commun. p. 32.
Srinivasan, R. \& Chacko, K. K. (1967). In Conformation of Biopolymers. Vol. 2, pp. 607-615. Edited by C. N. Ramachandran. London \& New York: Academic Press Sutor, D. J. (1963). J. Chem. Soc. p. 1105.
Waser, J. (1963). Acta Cryst. 16, 1091.

The Crystal Structure of $\mathrm{CaKAsO}_{\mathbf{4}} \mathbf{. 8} \mathbf{H}_{\mathbf{2}} \mathbf{O}$

By Brian Dickens and Walter E. Brown*
Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234, U.S.A.

(Received 3 May 1972 and in revised form 5 June 1972)
$\mathrm{CaKAsO} \mathrm{A}_{4} .8 \mathrm{H}_{2} \mathrm{O}$ crystallizes in the orthorhombic unit cell $a=7 \cdot 146$ (1), $b=11.696$ (2), $c=7 \cdot 100$ (2) \AA at $25^{\circ} \mathrm{C}$ with cell contents of $2\left[\mathrm{CaKAsO}_{4} .8 \mathrm{H}_{2} \mathrm{O}\right.$]. The density calculated from the X-ray data is $2.027 \mathrm{~g} . \mathrm{cm}^{-3}$; that calculated from the refractive indices is $2.10 \mathrm{~g} . \mathrm{cm}^{-3}$. The structure has been refined to $R_{w}=0.037, R=0.043$ in space group $C m 2 m$, using 1023 observed reflections measured on an automated diffractometer and corrected for absorption. Allowance was made for anomalous dispersion and secondary isotropic extinction. All ions in $\mathrm{CaKAsO} 4.8 \mathrm{H}_{2} \mathrm{O}$ are completely hydrated. Ca coordinates to eight water oxygen atoms with $\mathrm{Ca} \cdots \mathrm{O}$ distances in the range $2 \cdot 460(5)$ to $2 \cdot 490$ (3) \AA. K coordinates to eight water oxygen atoms with $\mathrm{K} \cdots \mathrm{O}$ distances ranging from 2.756 (3) to $2 \cdot 960$ (7) \AA. The coordination polyhedron of Ca shares one face of four water molecules and two edges with neighboring coordination polyhedra of K . Each oxygen atom of the AsO_{4} ion is the acceptor in hydrogen bonds from four water molecules and forms no bonds with the cations. The two crystallographically different As-O distances in the AsO_{4}^{3-} ion are 1.682 (4) and 1.684 (4) \AA when uncorrected for thermal motion, and 1.690 and $1.692 \AA$ with the riding model correction. The structure of $\mathrm{CaKAsO} \mathrm{A}_{4} .8 \mathrm{H}_{2} \mathrm{O}$ is related to that of $\mathrm{MgNH}_{4} \mathrm{PO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, struvite. This structural type may be common to several calcium phosphates and related compounds.

Introduction

In crystallization, nucleation is an important step which could conceivably control the identities and forms of materials that grow to macroscopic sizes. For various reasons (Dickens \& Brown, 1970), studies of hydrates may give valuable clues to the existence of possible precursors or nuclei of crystallization in aqueous environments. In the formation of inorganic deposits in vivo, hydration of ions is likely to play a significant role, and the formation of ion pairs or higher complexes may be important. We found in our study of $\mathrm{CaCO}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ (Dickens \& Brown, 1970) that in the crystal structure, the Ca^{2+} and CO_{3}^{2-} ions are all in $\left[\mathrm{Ca}^{2+}, \mathrm{CO}_{3}^{2-}\right]^{\circ}$ ion pairs which are completely sur-

[^3]rounded by water molecules. To examine the hydration of Ca and the possible retention in the solid state of ion complexes involving XO_{4} ions, in this case AsO_{4}^{3-}, we have determined the crystal structure of $\mathrm{CaKAsO}_{4} .8 \mathrm{H}_{2} \mathrm{O}$.

Data collection and structure refinement

$\mathrm{CaKAsO} 4.8 \mathrm{H}_{2} \mathrm{O}$ was prepared by mixing $20 \mathrm{~cm}^{3}$ of $0 \cdot 1 \mathrm{M} . \mathrm{l}^{-1} \mathrm{CaCl}_{2}$ solution, $25 \mathrm{~cm}^{3} 1 \cdot 0 \mathrm{M.}^{-1}$ tripotassium citrate solution and $10 \mathrm{~cm}^{3} 3 \cdot 0 \mathrm{M} . \mathrm{l}^{-1} \mathrm{KOH}$ solution at $0^{\circ} \mathrm{C}$ and then adding $10 \mathrm{~cm}^{3} 0 \cdot 2 \mathrm{M} .1^{-1}$
$\mathrm{K}_{2} \mathrm{HAsO}_{4}$ solution. The resultant mixture was kept at $0^{\circ} \mathrm{C}$; precipitation of $\mathrm{CaKAsO} 4 \cdot 8 \mathrm{H}_{2} \mathrm{O}$ began after about two hours. This procedure is an adaptation of that given for $\mathrm{CaNH}_{4} \mathrm{PO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ by Lehr, Brown, Frazier, Smith \& Thrasher (1967).

The crystal used in the data collection was a rectangular plate with dimensions $0.06 \times 0.10 \times 0.12$

[^0]: * Present address: Division of Soils, C.S.I.R.O., Private Bag No. 1, Glen Osmond, South Australia 5064.
 \dagger Present address: Department of Biochemistry, University of Alberta, Edmonton 7, Alberta, Canada.
 \ddagger Present address: Department of Chemistry, Ohio State University, Columbus, Ohio 43210, U.S.A.

[^1]: * Supplementary Publication No. SUP 30011 (1 microfiche). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

[^2]: * The average value varies in this range with the number of the examples included and the relative weighting given the accuracy of particular analyses.

[^3]: * Director, American Dental Association Research Unit at the National Bureau of Standards, Washington, D. C. 20234, U.S.A.

